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Nitroaromatics seldom fluoresce. The importance of electron-deficient (n-type) conjugates, however, has

inspired a number of strategies for suppressing the emission-quenching effects of the strongly electron-

withdrawing nitro group. Here, we demonstrate how such strategies yield fluorescent nitroaryl

derivatives of dipyrrolonaphthyridinedione (DPND). Nitro groups near the DPND core quench its

fluorescence. Conversely, nitro groups placed farther from the core allow some of the highest

fluorescence quantum yields ever recorded for nitroaromatics. This strategy of preventing the known

processes that compete with photoemission, however, leads to the emergence of unprecedented
alternative mechanisms for fluorescence quenching, involving transitions to dark nw* singlet states and
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aborted photochemistry. Forming nw* triplet states from mrw* singlets is a classical pathway for

fluorescence quenching. In nitro-DPNDs, however, these wrt* and nwt* excited states are both singlets,

DOI: 10.1039/d1sc03670j

and they are common for nitroaryl conjugates. Understanding the excited-state dynamics of such

rsc.li/chemical-science nitroaromatics is crucial for designing strongly fluorescent electron-deficient conjugates.
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NTO of electron visualized with isovalue
0.035 and different view to show the new
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Fig.9 Potential-energy profiles (PEPs) along the carbon—-oxygen distances, Rco, and the corresponding S; — Sog NTOs (isovalues = 0.03, unless
indicated otherwise) optimized with the ADC(2)/def-SV(P) method in the lowest excited singlet states of (A and B) 5 and (C and D) 3. (A and C)
Circles connected by dashed line denote vertical energy of the ground state computed at the geometry of the respective excited state. For 5, (A)
locally-excited, rr*, state — blue squares, and the dark charge-transfer, 'CT, state — red triangles; and (B) NTOs along Rco. For 3, (C) locally-
excited, ', state — blue squares, and the dark 'nm* state — red triangles; and (D) NTOs along Rco, where the last bottom structure depicts the
electron NTO at isovalue of 0.035 to visualize the formation of the carbon—oxygen covalent bond, as circled with a red dashed line.
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Fig. 10 Excited-state dynamics of nitroaryl-substituted DPNDs. The
formed LE 'mr* states either radiatively decay to So, or non-adiabat-
ically transfer to dark states that form Cls with Sq providing pathways
for non-radiative deactivation. (A) Placing the nitro groups close to the
DPND core, such as in the ortho and peri derivatives, accommodates
the formation of dark CT states and the non-radiative deactivation
assumes a 'mr* — 'CT — Sy pathway. (B) When the nitro groups are
not spatially close to the DPND core, such as in the para and meta
derivatives, the energy level of the FC second singlet excited state, with
a 'nmt* character, decreases along the reaction coordinate, opening
almm* — nm* — Sy pathway for non-radiative deactivation.
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Fig. 6 Transient absorption decays normalized to 1 of (A) 1, (B) 5 and
(C) 13 in different solvents at observation wavelength of 520 nm.
Transient absorption spectra at different pump-probe time delays
(upper panel) and time-integrated absorption and emission spectra
normalized to 1 (lower panel) of (D) 1, (E) 5 and (F) 13 in DCM. The
transient absorption signals were recorded upon excitation at 480 nm.
Solid lines are from global multiexponential fits to the experimental
data. For clarity the transient absorption decays were offset on the y-
axis. B — bleach band, SE — stimulated emission, EA — excited state
absorption.
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Metal halide perovskites having high defect tolerance, high absorption char-
acteristics, and high carrier mobility demonstrate great promise as potential
light harvesters in photovoltaics and optoelectronics and have experienced

an unprecedented development since their occurrence in 2009. Semicon-
ductor quantum dots (QDs), on the other hand, have also been proved to be
very flexible toward shape, dimension, bandgap, and optical properties for
constructing optoelectronic devices. Of late, a strategic combination of both
materials has demonstrated extraordinary promise in photovoltaic applica-
tions and optoelectronic devices. Combining QDs and perovskites has proved
to be quite an effective strategy toward the formation of pinhole-free and
more stable perovskite crystals along with tunability of other properties. To
boost this exciting research field, it is imperative to summarize the work done
so far in recent years to provide an intriguing insight. This review is a critical Figure 1. Schematic llustration of the effect of different iniegrated
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Combining Perovskites and Quantum Dots: Synthesis,
Characterization, and Applications in Solar Cells, LEDs, and

Soumyadipta Rakshit, Piotr Piatkowski, Ivdn Mora-Serd, and Abderrazzak Douhal*
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quantum dots on different properties of perovskites and chief applica-

account of the advanced strategy toward combining these two fascinating tions of fie QD Perousiite lybid eystems
materials, including their different synthetic approaches regarding heteroepi-

taxial growth of perovskite crystals on QDs, carrier dynamics at the interface

and potential application in the field of solar cells, light emitting diodes, and
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Effect of the Mixture Composition of BmimBF,—Acetonitrile on the
Excited-State Relaxation Dynamics of a Solar-Cell Dye D149: An
Ultrafast Transient Absorption Study
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ABSTRACT: The excited-state relaxation dynamics of D149, one

g g g q grig D149+ACN 0.60
of the metal-free substituted indoline dyes used in dye-sensitized @B  Di4o+Mixture 7 (ps) 3 20z (ps) }
solar cells, is studied in the whole composition range of the 1- = .

0.45
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nitrile binary mixture by using time-integrated absorption, 460 nm ,i/'}—-
emission, and time-resolved transient absorption (TA) spectros- - & o Y
copies. The comparative analysis of absorption and emission prepr R 120(7; (ps) 2 007 (PS) R
spectra indicates that the value of Stokes shift reduces monotoni- BF; | Bmim*. . §/ o A
cally with decreasing mixture polarity. The global analysis of time- 3 T, Bghy, P, G . .
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components related to different processes in the excited state of ) T R TR TR ey i T R YWY R YR
the dye. Importantly, the observed timescales are highly sensitive D149 IL Xt

to composition, polarity, and viscosity of the binary mixture.

Increase of viscosity and decrease of polarity observed for increasing ionic liquid (IL) content in the mixture lead to overall increase
in the emission lifetime (S;—S;) of D149. At a lower IL mole fraction (Xj;, = 0.1), the emission lifetime shows a minimum that can
be traced back to the change from the situation in which the local environment of the dye is dominated by the interactions in
acetonitrile to that in which it is dominated by those in BmimBF,. This also is reflected in the occurrence of a minimum in relative
quantum yield in the same range of Xj;. The origin of the other moderately long-time component (33 ps in ACN-120 ps in
BmimBE,) is still debatable; however, for pure IL and all the mixtures, the composition dependence of this timescale is similar to
that of the longest emission lifetime.
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Figure S. TAS of D149 in BmimBF,, (A) short timescale (100—900 fs), (B) middle timescale (1—150 ps), (C) long timescale (200—1500 ps), (D)
solvation timescale. Dashed spectra are steady-state absorption (green) and emission (blue) spectra.
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o observed by femtosecond optical Kerr effect and
200025 aasaa T molecular dynamics simulations
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We have performed the measurements of the optical Kerr effect signal time evolution up to 4 ns for a
mixture of 1-alkyl-3-methyl-imidazolium hexafluorophosphate (BMIM PFg) ionic liquid and acetonitrile in
the whole mole fractions range. The long delay line in our experimental setup allowed us to capture
the complete reorientational dynamics of the ionic liquid. We have analysed the optical Kerr effect signal
in the time and frequency domains with help of molecular dynamics simulations. In our approximation
of the slow picosecond dynamics with a multi-exponential decay, we distinguish three relaxation times.
The highest two are assigned to the reorientation of the cation and acetonitrile molecules that are in the

vicinity of the imidazolium ring. The third one is recognized as originating from cation rotations and
reorientation of acetonitrile molecules in the bulk or in the vicinity of the aliphatic chains of the cation.
With help of the simulation we interpret the intermolecular band in the reduced spectral density,
obtained from Kerr signal, as follows: its low-frequency side results from oscillations of one of the

Received 20th July 2020, components in the cage formed by its neighbors, while the high-frequency side is attributed to the
Accepted 14th October 2020 librations of the cation and acetonitrile molecule as well as the intermolecular oscillations of system
DOI: 10.1039/d0cp03847d components involved in specific interactions. We use this assignment and concentration dependence of

the spectra obtained from velocity and angular velocity correlations to explain the mole fraction dependence

rsc.li/pccp of Kerr reduced spectral density.
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Time resolved transient transmission spectroscopy of TiCl, and SnCl,
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Abstract

Herewith, for the first time, we present the vibrational spectra collected for liquid TiCl, and liquid SnCl, by use of time
resolved transient transmission spectroscopy. Of our interest is the isotopically split isotropic intramolecular vibrational
band, the shape of which is very sensitive to intermolecular interactions. The high resolution spectra, obtained as
fast Fourier transforms of the time domain signals acquired in transient transmission experiment, are compared with
spontaneous Raman spectra. The dependence of the spectrum shape on intermolecular interactions has been established
by diluting TiCl, and SnCl, in CS, at different concentrations. Fitting the simplified oscillatory model of a liquid to
FFTs of time domain signals in transient transmission experiment we have found intermolecular force constants for all
concentrations. Application of the pump-probe spectroscopic technique and windowed fast Fourier transform procedure
allowed us to observe the evolution of the spectral shape, and thus of the intermolecular forces, after the liquid has been
perturbed by the femtosecond pump pulse.
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ABSTRACT

The synergistic effect of methanol/chloroform mixture on solute solvation was earlier attributed to the
formation of an extended hydrogen-bonding network in the mixture. Such a network was proposed to
be weak through the solute dipole-moment dependent experiment. In this study, we search for signa-
tures of such interactions using the femtosecond time-resolved optical Kerr effect spectroscopy, which
is sensitive to the ultrafast intermolecular dynamics. We observed a 2-3-fold retardation of the orienta-
tional diffusion time of chloroform molecules that is attributed to the formation of hydrogen-bonds with
methanol. Our frequency domain analysis in terms of the excess reduced spectral density and partial
reduced spectral density allowed us to detect a hydrogen-bond stretching band around 90 cm™! (with
107 cm™! natural frequency) associated with methanol molecules simultaneously accepting a
hydrogen-bond from chloroform and donating a hydrogen-bond to another methanol molecule.
Additionally, in an auxiliary mixture used in this study, where chloroform is replaced with carbon tetra-
chloride, we found evidence of carbon tetrachloride-methanol halogen-bond formation; however, its sig-

nature in the spectra is much weaker than in the case of chloroform-methanol hydrogen-bonding.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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