Experimental <u>Electron Density</u> Distribution and **<u>QTAIM</u>** Topological Analysis for the Perovskite Mineral: Sulphohalite – $Na_6(SO_4)_2FCl$

Agata Wróbel, dr Roman Gajda, prof. dr hab. Krzysztof Woźniak.

Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Poland

Outline

The acquaintance of modern crystallography onto mineralogy will be approached by endeavouring in an experimental charge density study for the double antiperovskite mineral – sulphohalite [Na₆(SO₄)₂FCl]. High-resolution X-ray diffraction data was collected employing AgKa radiation ($\lambda = 0.56087$ Å) to a resolution of 0.3941 Å at 100K. The crystal structure was solved by direct methods implementation based on merged SHELX data – in compliance with the Independent Atom Model (IAM). Electron density (ED) distribution $-\rho(\mathbf{r})$ was modelled, as proposed in the Hansen-Coppens formalism, by consecutive least-square multipolar refinements. The *quality* of collected data and computed **ED** model was assessed; conclusively it proved to be of high grade.

<i>High-resolutic</i> and ED		ion data colle D refinement	ı data collection refinement		[Crystal structure		Unit Cell	
Table 1. Crystal	data for <i>sulphohalite</i> .	Table 2. Data collec	ction for <i>sulphohalite</i> .							
Crystal	Sulphohalite	Data collection	Sulphohalite		IN ₂ F1	\mathbf{R}	[NaCl ₆]			

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$Na_6(SO_4)_2FCI$	Temperature [K]	100(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Formula molecular	281 51	Radiation type	Ag Ka ($\lambda = 0.56087$ Å)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mass [g/mol]	004.01	2Θ range for data	5.55 to 89.306
Space Group $Fm\bar{3}m$ Diffractometer Agilent Technologies SuperNova a [Å] 10.03124(7) Absorption correction SCALE3 ABSPACK Z 4 T_{min}, T_{max} 0.5019, 1.0000 $No.$ of measured, independent and observed 5847, 477, 477 D_x [g/cm ³] 2.530 $[I \ge 2\sigma(I)]$ reflections μ [mm ⁻¹] 0.552 $F(000)$ 752.0 $Crystal size [mm^3]$ 0.129 × 0.081 × 0.070 Table 3. Refinement features for the Independent Atom Model (IAM) and the Multipole Model (MM). Refinement IAM MM Data / restraints / parameters $477 / 0 / 10$ $477 / 22 / 33$ Goodness-of-fit on F^2 1.0390 Final R indexes [$I \ge 2\sigma(I)$] on F^2 $R_1 = 0.0292; wR_2 = 0.0496$ $R_1 = 0.0292; wR_2 = 0.0496$ $R_1 = 0.0229; wR_2 = 0.0698$ Largest diff. peak/hole[e Å ⁻³] 0.488 / -1.477	Crystal System	Cubic	<u>collection [°]</u>	A milont Toolandlamian Community
a [Å] 10.03124(7) Absorption correction SCALES Abstrack Volume [Å] 1009.40(2) T_{min} 0.5019, 1.0000 Z 4 independent and observed 5847, 477, 477 D_x [g/cm ³] 2.530 $I \ge 2o$ (I)] reflections R_{intr} R_{sigma} 0.0675, 0.0263 μ [mm ⁻¹] 0.552 $-25 \le h \le 25;$ $-25 \le h \le 25;$ $-25 \le h \le 25;$ $F(000)$ 752.0 Index Ranges $-25 \le h \le 25;$ $Crystal size [mm^3]$ 0.129 × 0.081 × 0.070 Index Ranges $-25 \le h \le 25;$ T_{min} R_{sigma} 0.06075, 0.0263 $-25 \le h \le 25;$ $-25 \le h \le 25;$ $Crystal size [mm^3]$ 0.129 × 0.081 × 0.070 Index Ranges $-25 \le h \le 25;$ $Sin\theta/\lambda_{max}$ (Å ⁻¹) 0.500 $-25 \le h \le 25;$ $-25 \le h \le 25;$ Goodness-of-fit on F ² Independent Atom Model (IAM) and the Multipole Model (MM). Refinement IAM MM Data / restraints / parameters 477 / 0 / 10 477 / 22 / 33 Goodness-of-fit on F ² 1.0390 2.8895 R ₁ = 0.0188; wR ₂ = 0.0423 Final R indexes [all data] on F ² R ₁ = 0.0292; wR ₂ = 0.0830	Space Group	Fm3m	<u> </u>	Agrient Technologies Supernova
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	a [Å]	10.03124(7)		SUALE3 ABSPAUK
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Volume [Å ³]	1009.40(2)	$\underbrace{I_{min}, I_{max}}_{No of measured}$	0.5019, 1.0000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Z	4	independent and observed	5847,477,477
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D_r [g/cm ³]	2.530	$[I > 2\sigma (I)] \text{ reflections}$	
$F(000)$ 752.0 Index Ranges $-25 \le h \le 25;$ Crystal size [mm ³] $0.129 \times 0.081 \times 0.070$ Index Ranges $-25 \le l \le 25;$ Table 3. Refinement features for the Independent Atom Model (IAM) and the Multipole Model (MM). Refinement IAM MM Data / restraints / parameters $477 / 0 / 10$ $477 / 22 / 33$ Goodness-of-fit on F^2 1.0390 2.8895 Final R indexes [$I \ge 2\sigma$ (I)] on F^2 $R_1 = 0.0292;$ w $R_2 = 0.0496$ $R_1 = 0.0188;$ w $R_2 = 0.0423$ Final R indexes [all data] on F^2 $R_1 = 0.0323;$ w $R_2 = 0.0830$ $R_1 = 0.0229;$ w $R_2 = 0.0698$ Largest diff. peak/hole[e 'Å' ³] $0.488 / \cdot 1.477$ $0.402 / \cdot 0.846$	$\frac{1}{\mu [\text{mm}^{-1}]}$	0.552	R_{int}, R_{sigma}	0.0675, 0.0263
Item (000) Item (000) <thitem (000)<="" th=""> <thitem (000)<="" th=""> <thitem (000)<="" td="" tht<=""><td><i>F</i>(000)</td><td>752.0</td><td>Indox Rongoo</td><td>$-25 \le h \le 25;$ $25 \le h \le 25.$</td></thitem></thitem></thitem>	<i>F</i> (000)	752.0	Indox Rongoo	$-25 \le h \le 25;$ $25 \le h \le 25.$
Crystal size [mm ³] $0.129 \times 0.081 \times 0.070$ $\sin\theta/\lambda_{max}(Å^{-1})$ 0.500 Table 3. Refinement features for the Independent Atom Model (IAM) and the Multipole Model (MM). Refinement IAM MM Data / restraints / parameters $477 / 0 / 10$ $477 / 22 / 33$ Goodness-of-fit on F^2 1.0390 2.8895 Final R indexes [$I \ge 2\sigma(I)$] on F^2 $R_1 = 0.0292$; w $R_2 = 0.0496$ $R_1 = 0.0188$; w $R_2 = 0.0423$ Final R indexes [all data] on F^2 $R_1 = 0.0323$; w $R_2 = 0.0830$ $R_1 = 0.0229$; w $R_2 = 0.0698$ Largest diff. peak/hole[e ·Å· ³] $0.488 / -1.477$ $0.402 / -0.846$	1 (000)		muex manges	$-25 \le K \le 25$, -25 < 1 < 25
max (C) Table 3. Refinement features for the Independent Atom Model (IAM) and the Multipole Model (MM). Refinement IAM MM Data / restraints / parameters $477 / 0 / 10$ $477 / 22 / 33$ Goodness-of-fit on F^2 1.0390 2.8895 Final R indexes [$I \ge 2\sigma$ (I)] on F^2 $R_1 = 0.0292$; w $R_2 = 0.0496$ $R_1 = 0.0188$; w $R_2 = 0.0423$ Final R indexes [all data] on F^2 $R_1 = 0.0323$; w $R_2 = 0.0830$ $R_1 = 0.0229$; w $R_2 = 0.0698$ Largest diff. peak/hole[e ·Å·3] $0.488 / -1.477$ $0.402 / -0.846$	Crystal size [mm ³]	0.129 imes 0.081 imes 0.070	$\sin\theta/\lambda_{max}$ (Å ⁻¹)	0.500
Data / restraints / parameters 47770710 477722733 Goodness-of-fit on F^2 1.0390 2.8895 Final R indexes [I $\geq 2\sigma$ (I)] on F^2 $R_1 = 0.0292$; w $R_2 = 0.0496$ $R_1 = 0.0188$; w $R_2 = 0.0423$ Final R indexes [all data] on F^2 $R_1 = 0.0323$; w $R_2 = 0.0830$ $R_1 = 0.0229$; w $R_2 = 0.0698$ Largest diff. peak/hole[e ·Å ·3] 0.488 / -1.477 0.402 / -0.846		omont		
Goodness-of-int on F^2 1.0590 2.0095 Final R indexes $[I \ge 2\sigma (I)]$ on F^2 $R_1 = 0.0292$; $wR_2 = 0.0496$ $R_1 = 0.0188$; $wR_2 = 0.0423$ Final R indexes [all data] on F^2 $R_1 = 0.0323$; $wR_2 = 0.0830$ $R_1 = 0.0229$; $wR_2 = 0.0698$ Largest diff. peak/hole[e ·Å-3] 0.488 / -1.477 0.402 / -0.846	Deta / matraint	ement		<u>MM</u> 477 / 99 / 99
Final R indexes $[I \ge 20 (I)]$ on F^2 $R_1 = 0.0292$; $wR_2 = 0.0496$ $R_1 = 0.0188$; $wR_2 = 0.0425$ Final R indexes [all data] on F^2 $R_1 = 0.0323$; $wR_2 = 0.0830$ $R_1 = 0.0229$; $wR_2 = 0.0698$ Largest diff. peak/hole[e A^{-3}] $0.488 / -1.477$ $0.402 / -0.846$	Data / restraint	ement ts / parameters	477 / 0 / 10	MM 477 / 22 / 33
Final K indexes [an data] on F^2 $\kappa_1 = 0.0325$; $w\kappa_2 = 0.0850$ $\kappa_1 = 0.0229$; $w\kappa_2 = 0.0698$ Largest diff. peak/hole[e ·Å ⁻³] $0.488 / -1.477$ $0.402 / -0.846$	Data / restraint Goodness-c	ement ts / parameters of-fit on F^2	$\frac{1401}{477 / 0 / 10}$ 1.0390 $D_{10} = 0.0202 = -0.0400$	MM 477 / 22 / 33 2.8895 D = 0.0188; == 0.0492
	Data / restraint Goodness-c Final <i>R</i> indexes	ts / parameters of-fit on F^2 $[I \ge 2\sigma (I)]$ on F^2	$\frac{477 / 0 / 10}{1.0390}$ $R_1 = 0.0292; wR_2 = 0.0496$ $R_2 = 0.0820$	$\frac{MM}{477 / 22 / 33}$ 2.8895 $R_1 = 0.0188; wR_2 = 0.0423$ $R_2 = 0.0608$
·	Data / restraint Goodness-c Final <i>R</i> indexes Final <i>R</i> indexes	ts / parameters of-fit on F^2 $[I \ge 2\sigma (I)]$ on F^2 [all data] on F^2	$\frac{477 / 0 / 10}{1.0390}$ $R_1 = 0.0292; wR_2 = 0.0496$ $R_1 = 0.0323; wR_2 = 0.0830$ $0.488 / -1.477$	$ \begin{array}{r} \mathbf{MM} \\ 477 / 22 / 33 \\ \hline 2.8895 \\ \hline \mathbf{R}_1 = 0.0188; \ \mathbf{wR}_2 = 0.0423 \\ \hline \mathbf{R}_1 = 0.0229; \ \mathbf{wR}_2 = 0.0698 \\ \hline 0.402 / -0.846 \\ \end{array} $
	Data / restraint Goodness-o Final <i>R</i> indexes	ts / parameters of-fit on F^2 $[I>2\sigma(I)]$ on F^2	$\frac{477 / 0 / 10}{1.0390}$ $R_1 = 0.0292; wR_2 = 0.0496$	$\frac{MM}{477 / 22 / 33}$ 2.8895 $R_1 = 0.0188; wR_2 = 0.0423$
	Data / restraint Goodness-c Final <i>R</i> indexes Final <i>R</i> indexes Largest diff. pe	ts / parameters of-fit on F^2 $[I \ge 2\sigma (I)]$ on F^2 [all data] on F^2 eak/hole[e·Å ⁻³]	$\frac{477 / 0 / 10}{1.0390}$ $R_1 = 0.0292; wR_2 = 0.0496$ $R_1 = 0.0323; wR_2 = 0.0830$ $0.488 / -1.477$	$MM \\ 477 / 22 / 33 \\ 2.8895 \\ R_1 = 0.0188; wR_2 = 0.0423 \\ R_1 = 0.0229; wR_2 = 0.0698 \\ 0.402 / -0.846 \\ \hline$
	Data / restraint Goodness-o Final <i>R</i> indexes Final <i>R</i> indexes Largest diff. pe	ts / parameters of-fit on F^2 $[I \ge 2\sigma (I)]$ on F^2 [all data] on F^2 eak/hole[e ·Å -3] efformati	$\frac{477 / 0 / 10}{1.0390}$ $R_1 = 0.0292; wR_2 = 0.0496$ $R_1 = 0.0323; wR_2 = 0.0830$ $0.488 / -1.477$	$\frac{MM}{477 / 22 / 33}$ 2.8895 $R_1 = 0.0188; wR_2 = 0.0423$ $R_1 = 0.0229; wR_2 = 0.0698$ $0.402 / -0.846$

Table 10. Atomic Lagrangian – L, for computed **AB** in the sulphohalite crystal.

Atom	Cl	old S	Na	F	0
Atomia Lagrangian I	1 401 . 10-2	$1.049 \cdot 10-3$	1 796 . 10-3	1 460 . 10-3	4 800 . 10-3

bonding is presented by black lines; whereas bonding paths are depicted by black dashed lines.

Critical Points (CP's)

Table 4. Bond Critical Point (BCP) features

BCP	$ ho(r_{BCP})$	$\nabla^2 \rho(\mathbf{r}_{BCP})$	Ellipticity
type	[e·Å-3]	[e·Å-5]	- 8
Cl···S	0.008	0.120	0.090
ClNa	0.126	0.575	0.000
S-O	2.484	-31.00	0.002
Na····O	0.129	1.931	0.197
Na…F	0.207	3.022	0.000
<i>FO</i>	0.061	0.868	0.340

	Table 5. Ring Critical Point (RCP) features.					
	RCP type	ρ(r _{RCP}) [e·Å ⁻³]	∇²ρ(r _{RCP}) [e·Å⁻5]			
	RI	0.0520	R0.912			
2	RII	-0.0018	0.332			
	^R III, ^R IV, ^R V	-0.0070	0.201			

_	Table 6. (Cage Critical Poin	t (CCP) features.
	CCP type	ρ(r _{CCP}) [e·Å ⁻³]	∇²ρ(r _{CCP}) [e·Å⁻⁵]
	cI' cII	-0.025	0.514
	cIII, cIV	-0.026	0.401

Table 11. Evaluation of the	e nature of in	teratomic int	ceractions acc	ording to the	dichotomous	classification.
Interatomic Interaction	Cl···S	ClNa	S–O	Na…O	$Na \cdots F$	F···O
$ abla^2 ho(\mathrm{r_{BCP}}) \ [\mathrm{e}\cdot\mathrm{\AA}^{-5}]$	> 0	> 0	< 0	> 0	> 0	> 0
VSCC overlap at BP	No	No	Yes	No	No	No
Outcome	Closed-	Closed-	Shared-	Closed-	Closed-	Closed-

Topological analysis according to the Quantum Theory of Atoms in Molecules – QTAIM was undertaken based on the experimentally attained distribution of charge. Atomic basins (AB's) were delineated based on the zero flux surfaces (ZFS's) denoted on the gradient vector field of $ED - \nabla \rho(r)$. The appertaining volumes and charges of each basin were computed by full-volume integration. Following, critical points (CP's) were identified as local extrema of the $\nabla \rho(\mathbf{r})$ function, and classified based on the Laplacian of $\mathbf{ED} - \nabla^2 \rho(\mathbf{r})$. Morse's 'characteristic set' condition was met. The study of primary bundles (PB's), as proposed by Pendás, revealed the interconnection between AB's and CP's onto basins of attraction or basins of repulsion. The nature of interatomic interactions was assessed through the *dichotomous* classification. The S-O contact was acknowledged as a *covalent* with a shared-shell. The remaining contacts were characterized as non-covalent closed-shell (Cl···Na, Na···O and Na···F) or weak van der Waals closed-shell (Cl···S and F···O).

