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The scientific knowledge that mankind has at its disposal enables us to study the interactions that occur in bio- Eor C HARACT E R I ZAT I O N
logical molecules in the nanoscale. Nevertheless, what about the entire dynamic process of conformational chan-
ges? Is 1t possible to characterize the short peptide folding process by the fluctuation of nanomechanical parame- . Fig. 8. Representation of selected clusters from clusterization for trajectory starting from the extended structure.
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simulated. All this attempt have been made to obtain nanomechanical constants of the peptide in its folded and Fig.4. RMSD for trajectory starting
. from extended peptide structure. |
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hlocking C : idated h he d din th | Initial input data: structure N
ocking C-terminus amidated group, what can be denoted In three letter sym- in Protein Data Bank (.pdb) file format Tab. 1. Calculated parameters for the trajectory starting from extended peptide structure with the given formulas.
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In the project, two simulations of folding trajectory of the a-helical KR1 colvmtation of the cuet . — _ — —
: : : : : olvatation of the system S Fo— —Kxk,|D= BT den M k= B — |y T SR
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using GROMACS software. The main difference between the two cases was Neutralize the system with ions i R method |
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