Porównanie właściwości SERS nanocząstek złota z ligandami cytrynianowymi i tiolowymi

Małgorzata Kondej

Pracownia Spektroskopii i Oddziaływań Międzycząsteczkowych

Promotor: prof. dr hab. Barbara Pałys Opiekun: mgr Mateusz Kasztelan

NANOCZĄSTKI

AuNPs – nanosfery (zdjęcie SEM)

AuNPs /AuNURs tiolowane CHCl3, PEG Widma ATR w podczerwieni Widma w podczerwieni pokazują, że wymiana ligandów zachodzi bardzo efektywnie. Pasma charakterystyczne dla

AuNPs

cytrynianowe

cytrynianów (ok.1650 cm⁻¹ i 1370 cm⁻¹ – drgania grupy COO- - antysymetryczne i symetryczne rozciągające) znikają i pojawiają się pasma charakterystyczne dla łańcucha alkilowego tiolu (2926 cm ⁻¹, 2852 cm ⁻¹ drgania rozciągające C-H).

AuNURs – nanojeże (zdjęcie TEM)

WNIOSKI

Pomyślnie zsyntetyzowano nanocząstki cytrynianowe

i zmodyfikowano je tiolem powodując wymianę ligandu.

• Na widmie nanocząstek tiolowanych obserwujemy silne pasma pochodzące prawdopodobnie od nadmiaru tiolu.

• Nanocząstki cytrynianowe wzmacniają sygnał ramanowski pochodzący od R6G, przy nanocząstkach tiolowanych wzmocnienie jest słabsze.

· AuNURs cytrynianowe mocniej wzmacniają widmo ramanowskie R6G niż AuNPs cytrynianowe.

• Nanocząstki cytrynianowe prawdopodobnie katalizują polimeryzację dopaminy.

• Dopamina nie polimeryzuje na tiolowanych nanocząstkach.

· Ligand wpływa nie tylko na SERS, ale także na właściwości fotokatalityczne nanocząstek.

Dla nanocząstek cytrynianowych możemy łatwo zauważyć pasma charakterystyczne dla R6G – bardziei intensywne dla AuNURs- zaś w przypadku nanocząstek tiolowanych pasma ligandów tiolowych są bardzo intensywne i trudno zauważyć pasma rodaminy na ich tle. Jeśli przyjrzymy sie bliżej widmie o stężeniu 10⁻⁴ możemy zauważyć kilka charakterystycznych dla rodaminy pasm.

1200

DOPAMINA

DA 10-5 na AuNPs tiol..DA 10-6 na AuNPs tiol DA 10-5 na AuNURs tiol. AuNURs tiol. DA proszek

BIBLIOGRAFIA

[1] Mateusz Kasztelan^{ab}, Anna Słoniewska^c, Maciej Gorzkowski^c, AdamLewera^{ac}, Barbara Pałys^{ac}, Sylwia Żołądek^a "Ammonia modified graphene oxide – Gold nanoparticles composite as a substrate for surface enhanced Raman spectroscopy", Appl. Surf. Sci 554(2021)149060

[2] Ana B. Serrano-Montes[†], Dorleta Jimenez de Aberasturi^{*+}, Judith Langer[†], Juan J. Giner-Casares[†], Leonardo Scarabelli[†], Ada Herrero[†], and Luis M. Liz-Marzán^{*†} "A General Method for Solvent Exchange of Plasmonic Nanoparticles and Self-Assembly into SERS-Active Monolayers", Langmuir 2015

RODAMINA 6G