

NATALIA KASPRZAK

Pracownia Teorii i Zastosowań Elektrod

Promotor: prof. dr hab. Anna M. Nowicka

Opiekun: mgr inż. Monika Nisiewicz

WSTĘP I CEL PRACY

Ferrocen to aromatyczny kompleks sandwiczowy, którego struktura obejmuje atom metalu żelaza ulokowany pomiędzy dwoma pierścieniami cyklopentadienylowymi. Posiada on właściwości redoks, wynikające z obecności elektroaktywnego centrum aktywnego, którym jest żelazo. Ferrocen oraz jego pochodne są szeroko wykorzystywane w różnych gałęziach życia takich jak: biomedycyna, elektrokataliza, membranowa ogniwa paliwowa, czujniki, baterie, tworzywa sztuczne, materiały lotnicze, ciekłe kryształy, ogniwa fotowoltaiczne, czy też optyka.

Celem niniejszej pracy magisterskiej było zbadanie triferrocenowych pochodnych jako receptory w detekcji związków aromatycznych i wybranych jonów. Triferrocenowa pochodna 2,4,6-trifenylo-1,3,5-triazyny została zastosowana jako receptor do detekcji pirenu, chryzenu, fluorenu, fenantrenu, 9,10-difenyloantracenu i 1,4-terfenylu, natomiast w detekcji anionów i kationów nieorganicznych wykorzystano triferrocenowe pochodne 1,3,5-trifenylobenzenu. Receptory zostały zsyntezowane przez dr inż. Artura Kasprzaka z WCh PW.

RECEPTORY W DETEKCJI ZWIĄZKÓW AROMATYCZNYCH I WYBRANYCH JONÓW NIEORGANICZNYCH

Cykliczne krzywe woltamperometryczne warstw receptorowych zarejestrowane dla różnych szybkości polaryzacji elektrody z zakresu 0.005-1.0 V·s⁻¹. Wykresy wewnętrzne: Zależność wartości prądu piku anodowego w funkcji szybkości polaryzacji elektrody.

CHARAKTERYSTYKA ANALITYCZNA SYNTETYCZNYCH RECEPTORÓW MOLEKULARNYCH

Krzywe DPV dla GC/Fc-receptor-Bu₄NPF₆-Nafion[®] zarejestrowane w 0.1 M Bu₄NPF₆ w DCM dla różnych stężeń badanych związków organicznych. Wykresy wewnętrzne: Zależności wartości prądu piku anodowego w funkcji stężenia badanego związku.

Zależności wartości prądu piku anodowego w funkcji stężenia badanego anionu. Wykresy wewnętrzne: Krzywe DPV dla GC/Fc-receptor-Nafion[®] zarejestrowane w 100 mM NaBF₄ (aq) dla różnych stężeń badanych anionów.

Zależności wartości prądu piku anodowego w funkcji stężenia badanego kationu. Wykresy wewnętrzne: Krzywe DPV dla GC/Fc-receptor-Nafion[®] zarejestrowane w 100 mM KNO₃ dla różnych stężeń badanych kationów.

PARAMETRY ANALITYCZNE KRZYWYCH KALIBRACYJNYCH

	Równanie krzywej kalibracji	R ²	Zakres analityczny [µM]	LOD [μM]	RSD [%]
Piren	$\Delta I = (7.6 \pm 0.2)C + (0.02 \pm 0.02)$	0.999	10 - 200	1.2	3.6
Fluoren	$\Delta I = (43.3 \pm 1.2)C + (0.3 \pm 0.13)$	0.998	10 - 200	0.5	3.5
Fenantren	$\Delta I = (12.7 \pm 0.4)C + (0.01 \pm 0.01)$	0.998	10 - 200	1.1	2.7
Chyryzen	$\Delta I = (8.5 \pm 0.6)C + (0.06 \pm 0.07)$	0.995	10 - 200	1.0	2.8
9,10-difenyloantracen	$\Delta I = (10.7 \pm 0.6)C + (0.06 \pm 0.06)$	0.995	10 - 200	1.4	3.4
1,4-terfenyl	$\Delta I = (12.0 \pm 0.3)C + (0.01 \pm 0.03)$	0.999	10 - 200	0.9	3.2

	Równanie krzywej kalibracji	R ²	Zakres analityczny [µM]	LOD [μΜ]	RSD [%]	
Br⁻	$\Delta I = (0.0024 \pm 0.0001)C + (0.160 \pm 0.015)$	0.999	10 - 500	1.2	1.9	
-	$\Delta I = (0.0046 \pm 0.0004)C + (0.130 \pm 0.044)$	0.991	10 - 200	0.9	2.1	
CIO ₄ -	$\Delta I = (0.0031 \pm 0.0002)C + (0.150 \pm 0.027)$	0.992	10 - 200	0.7	2.3	
NO ₃ -	$\Delta I = (0.0030 \pm 0.0004)C + (0.094 \pm 0.041)$	0.971	10 - 200	1.5	2.6	
CH ₃ COO ⁻	$\Delta I = (0.0028 \pm 0.0002)C + (0.088 \pm 0.023)$	0.993	10 - 200	1.3	1.8	
H ₂ PO ₄ ⁻	$\Delta I = (0.0046 \pm 0.0004)C + (0.095 \pm 0.050)$	0.982	10 - 200	1.1	2.3	

	Równanie krzywej kalibracji	R ²	Zakres analityczny [µM]	LOD [µM]	RSD [%]
Cu ²⁺	$\Delta I = (0.006 \pm 0.0002)C + (0.22 \pm 0.03)$	0.995	10 - 200	1.8	2.7
Pb ²⁺	$\Delta I = (0.015 \pm 0.0010)C + (0.66 \pm 0.14)$	0.991	10 - 200	0.6	2.4
Cr ³⁺	$\Delta I = (0.008 \pm 0.0004)C + (0.91 \pm 0.05)$	0.992	10 - 200	1.4	2.9
Fe ³⁺	$\Delta I = (0.022 \pm 0.0020)C + (0.88 \pm 0.20)$	0.991	10 - 150	0.5	2.5

Granica wykrywalności:

 $LOD = \overline{x} \pm 3\sigma_x$

 \overline{X} : średnia wartość sygnału ślepej próby (*n*=3) σ_x : odchylenie standardowe dla ślepej próby

PODSUMOWANIE

Przeprowadzone badania pozwalają stwierdzić, że triferrocenowe pochodne 2,4,6-trifenylo-1,3,5-triazyny są efektywnymi receptorami do elektrochemicznego oznaczania wielopierścieniowych pochodnych aromatycznych, natomiast triferrocenowe pochodne iminowe i amidowe 1,3,5-trifenylobenzenu są efektywnymi receptorami w detekcji jonów w rozpuszczalnikach polarnych.

- w obecności pirenu i fluorenu nastąpił wzrost intensywności sygnału prądowego Fc ze wzrostem stężenia analitu. W pozostałych przypadkach ze wzrostem stężenia następował spadek sygnału prądowego Fc. Biorąc pod uwagę symetryczną budowę receptora, gdzie jednostki ferrocenowe łączą się z dwoma równoległymi względem siebie 1,3,5-trifenylobenzenami, można przypuszczać, że badane związki aromatyczne oddziałują z tym receptorem poprzez interkalację.
- aniony bromkowe i jodkowe oddziaływały z receptorem poprzez oddziaływanie elektrostatyczne z kationem ferrocenowym. Pozostałe aniony mogły oddziaływać z receptorem elektrostatycznie lub poprzez wiązania wodorowe. W przypadku rozpoznania wyłącznie na drodze oddziaływań elektrostatycznych intensywność sygnału utleniania receptora rosła wraz ze wzrostem stężenia anionów.
 Obecność w analizowanym roztworze anionów zawierających atomy donorowe powodowała spadek zarejestrowanego sygnałów prądowych receptora.
- wraz ze wzrostem stężenia kationu w roztworze występują coraz większe spadki prądu utleniania ferrocenu. Ten spadek intensywności sygnału może być spowodowany obecnością kationu w pobliżu jednostek ferrocenu, a także właściwościami utleniającymi kationu. Reakcja utleniania-redukcji między ferrocenem a kationem zachodzi głównie w przypadku jonów Cu(II) lub Fe(III), ponieważ te kationy można łatwo zredukować odpowiednio do jonów Cu(I) i Fe(II). W takim przypadku sygnał utleniania ferrocenu powinien przesunąć się w kierunku mniejszych wartości potencjału. W przeprowadzonym doświadczeniu takiego zachowania nie obserwowano, co może być wywołane labilnością jednostek ferrocenowych w strukturze receptora.

Wyniki dotyczące analizy jonów nieorganicznych zostały opublikowane w czasopiśmie Dalton Transactions.

Kasprzak A., Kasprzak N., Kowalczyk A., Nowicka A.M. , Ferrocenylated 1,3,5-triphenylbenzenes for the electrochemical detection of various cations or anions" Dalton Trans.; DOI: 10.1039/D1DT01287H